Question:`(x^2 + xy)/(x^2y)` এবং `(x^2 - xy)/(xy^2)` কে সমহরবিশিষ্ট ভগ্নাংশে প্রকাশ কর।
Answer `(x^2 + xy)/(x^2y)` এবং `(x^2 - xy)/(xy^2)` প্রদত্ত ভগ্নাংশগুলোর হর `x^2y`ও `xy^2` `= x^2y^2` এখানে, `x^2y^2 -: x^2y = y` `:. (x^2 + xy)/(x^2y) = ((x^2 + xy). y)/(x^2y xx y)` `= (y (x^2 + xy))/(x^2y^2)` আবার, `x^2y^2 -: xy^2 = x` `:. (x^2 - xy)/(xy^2) = ((x^2 - xy))/(xy^2.x) = (x(x^2 - xy))/(x^2y^2)` :. নির্ণেয় সমহরবিশিষ্ট ভগ্নাংশগুলো হলো `(y(x^2 + xy))/(x^2y^2), (x(x^2 - xy))/(x^2y^2)` উত্তর: `(y(x^2 + xy))/(x^2y^2), (x(x^2 - xy))/(x^2y^2)`
+ Report
`(x^2 + xy)/(x^2y)` abong `(x^2 - xy)/(xy^2)` ke shomohorobishisht bhgnangshe prokasho karo.