Question:সাধারণ হরবিশিষ্ট ভগ্নাংশে প্রকাশ কর: 2. গ. `x/(x - y), y/(x + y), z/(x(x + y))` 

Answer গ.`x/(x - y), y/(x + y), z/(x(x + y))` প্রদত্ত ভগ্নাংশগুলোর হর (x - y),(x + y) ও x(x + y) এর ল,সা,গু = x(x - y) (x + y) এখানে, হরগুলোর ল,সা,গু/প্রথম ভগ্নাংশের হর `= (x(x - y) (x + y))/(x - y)` `= x(x + y)` `:. x/(x - y) = (x.x(x + y))/((x - y).x(x + y))` `= (x^2(x + y))/(x(x - y)(x + y))` `= (x^2(x + y))/(x(x^2 - y^2))` হরগুলোর ল,সা,গু/দ্বিতীয় ভগ্নাংশের হর `= (x(x - y) (x + y))/(x + y)` `= x (x - y)` `:. y/(x + y) = (y. x(x - y))/((x + y). x(x - y))` `= (xy(x - y))/(x(x - y) (x + y)) ` `= (xy(x - y))/(x(x^2 - y^2))` এবং হরগুলোর ল,সা,গু/তৃতীয় ভগ্নাংশের হর `= (x (x - y) (x + y))/(x (x + y))` = x - y `:. z/(x(x + y)) = (z(x - y))/(x(x + y) (x - y))` `= (z(x - y))/(x(x - y) (x + y)) ` `= (z(x - y))/(x(x^2 - y^2)` :. নির্ণেয় সাধারণ হরবিশিষ্ট ভগ্নাংশগুলো হলো `(x^2(x + y))/(x(x^2 - y^2)), (xy(x - y))/(x(x^2 - y^2)), (z(x - y))/(x(x^2 - y^2))` উত্তর: `(x^2 (x + y))/(x(x^2 - y^2)), (xy(x - y))/(x(x^2 - y^2)) (z(x - y))/(x(x^2 - y^2))` 

+ Report
Total Preview: 1254
shadharon horobishisht bhgnangshe prokasho karo: 2. ga. `x/(x - y), y/(x + y), z/(x(x + y))`
Copyright © 2024. Powered by Intellect Software Ltd