Answer গ.`x/(x - y), y/(x + y), z/(x(x + y))`
প্রদত্ত ভগ্নাংশগুলোর হর (x - y),(x + y) ও x(x + y)
এর ল,সা,গু = x(x - y) (x + y)
এখানে, হরগুলোর ল,সা,গু/প্রথম ভগ্নাংশের হর
`= (x(x - y) (x + y))/(x - y)`
`= x(x + y)`
`:. x/(x - y) = (x.x(x + y))/((x - y).x(x + y))`
`= (x^2(x + y))/(x(x - y)(x + y))`
`= (x^2(x + y))/(x(x^2 - y^2))`
হরগুলোর ল,সা,গু/দ্বিতীয় ভগ্নাংশের হর
`= (x(x - y) (x + y))/(x + y)`
`= x (x - y)`
`:. y/(x + y) = (y. x(x - y))/((x + y). x(x - y))`
`= (xy(x - y))/(x(x - y) (x + y)) `
`= (xy(x - y))/(x(x^2 - y^2))`
এবং হরগুলোর ল,সা,গু/তৃতীয় ভগ্নাংশের হর
`= (x (x - y) (x + y))/(x (x + y))`
= x - y
`:. z/(x(x + y)) = (z(x - y))/(x(x + y) (x - y))`
`= (z(x - y))/(x(x - y) (x + y)) `
`= (z(x - y))/(x(x^2 - y^2)`
:. নির্ণেয় সাধারণ হরবিশিষ্ট ভগ্নাংশগুলো হলো
`(x^2(x + y))/(x(x^2 - y^2)), (xy(x - y))/(x(x^2 - y^2)), (z(x - y))/(x(x^2 - y^2))`
উত্তর: `(x^2 (x + y))/(x(x^2 - y^2)), (xy(x - y))/(x(x^2 - y^2)) (z(x - y))/(x(x^2 - y^2))`