Question:সাধারণ হরবিশিষ্ট ভগ্নাংশে প্রকাশ কর:
2. ঘ. `(x + y)/(x - y)^2, (x - y)/(x^3 + y^3), (y - z)/(x^2 - y^2)`
Answer ঘ.`(x + y)/(x - y)^2, (x - y)/(x^3 + y^3), (y - z)/(x^2 - y^2)`
এখানে, `(x - y)^2 = (x - y) (x - y)`
`x^3 + y^3 = (x + y) (x^2 - xy + y^2)`
`x^2 - y^2 = (x + y) (x - y)`
প্রদত্ত ভগ্নাংশগুলোর হর `(x - y)^2, x^3 + y^3 ও x^2 - y^2`
এর ল,সা,গু `(x - y) (x - y) (x + y) (x^2 - xy + y^2)`
এখানে, হরগুলোর ল,সা,গু/প্রথম ভগ্নাংশের হর
`((x - y)(x - y) (x + y) (x^2 - xy + y^2))/((x - y) (x - y))`
`= (x + y) (x^2 - xy + y^2) = x^3 + y^3`
`:. (x + y)/(x - y)^2 = ((x + y) (x^3 + y^3))/((x - y)^2 (x^3 + y^3))`
হরগুলোর ল,সা,গু/দ্বিতীয় ভগ্নাংশের হর
`((x - y) (x - y) (x + y) (x^2 - xy + y^2))/((x + y) (x^2 - xy + y^2))`
`= (x - y) (x - y)`
`= (x - y)^2`
`:. (x - y)/(x^3 + y^3) = ((x - y) (x - y)^2)/((x^3 + y^3) (x - y)^2)`
`= ((x - y))^3/((x - y)^2 (x^3 + y^3))`
এবং হরগুলোর ল,সা,গু/তৃতীয় ভগ্নাংশের হর
`= ((x - y) (x - y) (x + y) (x^2 - xy + y^2))/((x + y) (x - y))`
`= (x - y) (x^2 - xy + y^2)`
`:. (y - z)/(x^2 - y^2) = ((y - z) (x - y) (x^2 - xy + y^2))/((x^2 - y^2) (x - y) (x^2 - xy + y^2))`
`= ((x - y) (y - z) (x^2 - xy + y^2))/((x + y) (x - y) (x - y) (x^2 - xy + y^2))`
`= ((x - y) (y - z) (x^2 - xy + y^2))/((x - y)^2 (x^3 + y^3))`
:. সাধারণ হরবিশিষ্ট ভগ্নাংশগুলো হলো
`((x + y) (x^3 + y^3))/((x - y)^2 (x^3 + y^3)), ((x - y)^3)/((x - y)^2 (x^3 + y^3))`
`((x - y) (y - z) (x^2 - xy + y^2))/((x - y)^2 (x^3 + y^3))`
উত্তর: `((x + y) (x^3 + y^3))/((x - y)^2 (x^3 + y^3)), ((x - y)^3)/((x - y)^2 (x^3 + y^3))`
`((x - y) (y - z) (x^2 - xy + y^2))/((x - y)^2 (x^3 + y^3))`