Answer `a/(a^3 + b^3), b/(a^2 + ab + b^2), c/(a^3 - b^3)`
এখানে, `a^3 + b^3 = (a + b) (a^2 - ab + b^2)`
`a^2 + ab + b^2 = a^2 + ab + b^2`
`a^3 - b^3 = (a - b) (a^2 + ab + b^2)`
প্রদত্ত ভগ্নাংশগুলোর হর `a^3 + b^3, a^2 + ab + b^2 ও a^3 - b^3`
এর ল,সা,গু `= (a + b) (a^2 - ab + b^2) (a - b) (a^2 + ab + b^2)`
এখন, হরগুলোর ল,সা,গু/প্রথম ভগ্নাংশের হর
`= ((a + b) (a^2 - ab + b^2) (a - b) (a^2 + ab + b^2))/((a + b) (a^2 - ab + b^2))`
`= (a - b) (a^2 + ab + b^2) = a^3 - b^3`
`:. a/(a^3 + b^3) = (a(a^3 - b^3))/((a^3 + b^3) (a^3 - b^3)) `
`= (a(a^3 - b^3))/(a^6 - b^6)`
হরগুলোর ল,সা,গু/দ্বিতীয় ভগ্নাংশের হর
`((a + b) (a^2 - ab + b^2) (a - b) (a^2 + ab + b^2))/(a^2 + ab + b^2)`
`= (a + b) (a - b) (a^2 - ab + b^2)`
`= (a - b) (a^3 + b^3)`
`:. b/(a^2 + ab + b^2)`
`= (b(a - b) (a^3 + b^3))/((a - b) (a^3 + b^3) (a^2 + ab + b^2))`
`= (b(a - b) (a^3 + b^3))/((a^3 - b^3) (a^3 + b^3)) `
`= (b(a - b)(a^3 + b^3))/(a^6 - b^6)`
এবং হরগুলোর ল,সা,গু/তৃতীয় ভগ্নাংশের হর
`= ((a + b) (a^2 - ab + b^2)(a - b) (a^2 + ab + b^2))/((a - b)(a^2 + ab + b^2))`
`= a^3 + b^3`
`:. c/(a^3 - b^3) = (c(a^3 + b^3))/((a^3 - b^3)(a^3 + b^3)) `
`= (c(a^3 + b^3))/(a^6 - b^6)`
:. নির্ণেয় সাধারণ হরবিশিষ্ট ভগ্নাংশগুলো হলো
`(a(a^3 - b^3))/(a^6 - b^6), (b(a - b)(a^3 + b^3))/(a^6 - b^6) (c(a^3 + b^3))/(a^6 - b^6)`
উত্তর: `(a(a^3 - b^3))/(a^6 - b^6), (b(a - b)(a^3 + b^3))/(a^6 - b^6) (c(a^3 + b^3))/(a^6 - b^6)`