Question:সাধারণ হরবিশিষ্ট ভগ্নাংশে প্রকাশ কর:
২.চ. `1/(x^2 - 5x + 6), 1/(x^2 - 7x + 12), 1/(x^2 - 9x + 20)`
Answer `1/(x^2 - 5x + 6), 1/(x^2 - 7x + 12), 1/(x^2 - 9x + 20)`
এখানে, `x^2 - 5x + 6, = x^2 - 3x - 2x + 6`
`= x(x - 3) - 2(x - 3)`
`= (x - 3) (x - 2)`
`x^2 - 7x + 12 = x^2 - 4x - 3x + 12`
`= x(x - 4) - 3(x - 4)`
`= (x - 4) (x - 3)`
`x^2 - 9x + 20 = x^2 - 5x - 4x + 20`
`= x(x - 5) - 4(x - 5)`
`= (x - 5) (x - 4)`
প্রদত্ত ভগ্নাংশগুলোর হর `x^2 - 5x + 6, x^2 - 7x + 12`
ও `x^2 - 9x + 20` এর ল,সা,গু
`(x - 2) (x - 3) (x - 4) (x - 5)`
এখন, হরগুলোর ল,সা,গু/প্রথম ভগ্নাংশের হর
`((x - 2)(x - 3)(x - 4)(x - 5))/((x - 3)(x - 2))`
`= (x - 4) (x - 5)`
`:. 1/(x^2 - 5x + 6)`
`= (1(x - 5)(x - 4))/((x - 3)(x - 2)(x - 5)(x - 4))`
`= ((x - 4)(x - 5))/((x - 2)(x - 3)(x - 4)(x - 5))`
হর গুলোর ল,সা,গু/দ্বিতীয় ভগ্নাংশের হর
`((x - 2)(x - 3)(x - 4)(x - 5))/((x - 4)(x - 3))`
`= (x - 2) (x - 5)`
`:. 1/(x^2 - 7x + 12) = (1(x - 2)(x - 5))/((x - 4)(x - 3) (x - 2)(x - 5))`
`= ((x - 2) (x - 5))/((x - 2) (x - 3) (x - 4)(x - 5))`
এবং হরগুলোর ল,সা,গু/তৃতীয় ভগ্নাংশের হর
`((x - 2)(x - 3)(x - 4)(x - 5))/((x - 5)(x - 4))`
`= (x - 2) (x - 3)`
`:. 1/(x^2 - 9x + 20) = (1(x - 2)(x - 3))/((x - 5)(x - 4)(x - 2)(x - 3))`
`= ((x - 2)(x - 3))/((x - 2)(x - 3)(x - 4)(x - 5)`
:. নির্ণেয় সাধারণ হরবিশিষ্ট ভগ্নাংশগুলো হলো
`((x - 4)(x - 5))/((x - 2)(x - 3)(x - 4)(x - 5))`
`((x - 2)(x - 5))/((x - 2)(x - 3)(x - 4)(x - 5)) ও ((x - 2)(x - 3))/((x - 2) (x - 3)(x - 4)(x - 5))`
উত্তর: `((x - 4)(x - 5))/((x - 2)(x - 3)(x - 4)(x - 5)), ((x - 2)(x - 5))/((x - 2)(x - 3)(x - 4)(x - 5))`
ও `((x - 2)(x - 3))/((x - 2)(x - 3)(x - 4)(x - 5))`