Question:`(x - 3x + 2)/(x^2 - 4x + 3), (x^2 - 5x + 6)/(x^2 - 7x + 12), (x^2 - 16)/(x^2 - 9)` তিনটি বীজগাণিতীয় রাশি।
ক. ৩য় রাশির লব ও হরের পার্থক্য কত?
খ. রাশি তিনটির গুণফল কত?
গ. ১ম রাশি `-: `২য় রাশি `xx` ৩য় রাশি = কত?
Answer ক. দেওয়া আছে,
৩য় রাশির লব` = x^2 - 16`
এবং ৩য় রাশির হর = `x^2 - 9`
:. পার্থক্য `= (x^2 - 16)^2 - (x^2 - 9)^2`
`(x^2)^2 - 2.x^2.16 + (16)^2 - {(x^2)^2 - 2.x^2.9 + 9^2}`
`= x^4 - 32x^2 + 256 - x^4 + 18x^2 - 81`
`= - 14x^2 + 175`
`= 175 - 14x^2`
খ. নির্ণেয় গুণফল `= (x^2 - 3x + 2)/(x^2 - 4x + 3) xx (x^2 - 5x + 6)/(x^2 - 7x + 12) xx (x^2 - 16)/(x^2 - 9)`
`= (x^2 - 2x - x + 2)/(x^2 - 3x - x + 3) xx (x^2 - 3x - 2x + 6)/(x^2 - 4x - 3x + 12) xx (x^2 - 4^2)/(x^2 - 3^2)`
`= (x(x - 2) - 1(x - 2))/(x(x - 3) - 1(x - 3)) xx (x(x - 3) - 2(x - 3))/(x(x - 4) - 3(x - 4)) xx ((x + 4)(x - 4))/((x + 3) (x - 3))`
`= ((x - 2)(x - 1))/((x - 3)(x - 1)) xx ((x - 3)(x - 2))/((x - 4)(x - 3)) xx ((x + 4)(x - 4))/((x + 3)(x - 3))`
`= ((x - 2)(x - 2)(x + 4))/((x - 3)(x + 3)(x - 3))`
`= ((x - 2)^2(x + 4))/((x - 3)^2 (x + 3))`
উত্তর: `((x - 2)^2(x + 4))/((x - 3)^2 (x + 3))`
গ. `(x^2 - 3x + 2)/(x^2 - 4x + 3) -: (x^2 - 5x + 6)/(x^2 - 7x + 12) xx (x^2 - 16)/(x^2 - 9)`
`= (x^2 - 2x - x + 2)/(x^2 - 3x - x + 3) -: (x^2 - 3x - 2x + 6)/(x^2 - 4x - 3x + 12) xx (x^2 - 4^2)/(x^2 - 3^2)`
`= (x(x - 2) - 1(x - 2))/(x(x - 3) - 1(x - 3)) -: (x(x - 3) - 2(x - 3))/(x(x - 4) - 3(x - 4)) xx ((x + 4)(x - 4))/((x + 3)(x - 3))`
`= ((x - 2)(x - 1))/((x - 3)(x - 1)) -: ((x - 3)(x - 2))/((x - 4)(x - 3)) xx ((x + 4)(x - 4))/((x + 3)(x - 3))`
`= ((x - 2)(x - 1))/((x - 3)(x - 1)) xx ((x - 4)(x - 3))/((x - 3)(x - 2)) xx ((x + 4)(x - 4))/((x + 3)(x - 3))`
`= ((x - 4)^2 (x + 4))/((x - 3)^2 (x + 3))`
+ ExplanationNot Moderatedঅতিরিক্ত সৃজনশীল পশ্নাবলীর সমাধান