Question:১০.`a/b = b/c = c/d` হলে, দেখাও যে,
(i).`(a^3 + b^3)/(b^3 + c^3) = (b^3 + c^3)/(c^3 + d^3)`
(ii).`(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2`
Answer ১০.সমাধান:
(i).দেওয়া আছে,
`a/b = b/c = c/d`
ধরি,
`a/b = b/c = c/d = k`
`:. c = dk`
`b = ck = dk.k = dk^2`
`a = bk = dk^2.k = dk^3`
বামপক্ষ
`= (a^3 + b^3)/(b^3 + c^3)`
`= ((dk^3)^3 + (dk^2)^3)/((dk^2)^3 + (dk)^3)`
`= (d^3k^9 + d^3k^6)/(d^3k^6 + d^3k^3)`
`= (d^3k^6(k^3 + 1))/(d^3k^3(k^3 + 1))`
`= k^3`
ডানপক্ষ
`= (b^3 + c^3)/(c^3 + d^3)`
`= ((dk^2)^3 + (dk)^3)/((dk)^3 + d^3)`
`= (d^3k^6 + d^3k^3)/(d^3k^3 + d^3)`
`= (d^3k^3(k^3 + 1))/(d^3(k^3 + 1))`
`= k^3`
`:. (a^3 + b^3)/(b^3 + c^3) = (b^3 + c^3)/(c^3 + d^3)` ( দেখানো হলো )
(ii).দেওয়া আছে,
`a/b = b/c = c/d`
ধরি,
`a/b = b/c = c/d = k`
`:. c = dk`
`b = ck = dk.k = dk^2`
`a = bk = dk^2.k = dk^3`
বামপক্ষ
`= (a^2 + b^2 + c^2)(b^2 + c^2 + d^2)`
`= {(dk^3)^2 + (dk^2)^2 + (dk)^2}{(dk^2)^2 + (dk)^2 + d^2}`
`= {d^2k^6 + d^2k^4 + d^2k^2}{d^2k^4 + d^2k^2 + d^2}`
`= d^2k^2(k^4 + k^2 + 1) xx d^2(k^4 + k^2 + 1)`
`= d^4k^2(k^4 + k^2 + 1)^2`
ডানপক্ষ
`= (ab + bc + cd)^2`
`= (dk^3 xx dk^2 + dk^2 xx dk + dk xx d)^2`
`= (d^2k^5 + d^2k^3 + d^2k)^2`
`= {d^2k(k^4 + k^2 + 1)}^2`
`= d^4k^2(k^4 + k^2 + 1)^2`
`:. (a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2` ( দেখানো হলো )