Question:১২. `x = (root(3)(m + 1) + root(3)(m - 1))/(root(3)(m + 1) - root(3)(m - 1))` হলে, প্রমাণ কর যে,
`x^3 - 3mx^2 + 3x - m = 0.`
Answer ১২. সমাধান:
দেওয়া আছে,
`x = (root(3)(m + 1) + root(3)(m - 1))/(root(3)(m + 1) - root(3)(m - 1))`
বা, `(x + 1)/(x - 1) =(root(3)(m + 1) + root(3)(m - 1) + root(3)(m + 1) - root(3)(m - 1))/(root(3)(m + 1) + root(3)(m - 1) - root(3)(m + 1) + root(3)(m - 1))` [ যোজন-বিয়োজন করে ]
বা, `(x + 1)/(x - 1) = (2root(3)(m + 1))/(2root(3)(m - 1))`
বা, `(x + 1)/(x - 1) = (root(3)(m + 1))/(root(3)(m - 1))`
বা, `((x + 1)/(x - 1))^3 = ((root(3)(m + 1))/(root(3)(m - 1)))^3` [ উভয়পক্ষকে ঘন করে ]
বা, `(x^3 + 3x^2 + 3x + 1)/(x^3 - 3x^2 + 3x - 1) = (m + 1)/(m - 1)`
বা, `(x^3 + 3x^2 + 3x + 1 +x^3 - 3x^2 + 3x - 1)/(x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1) = (m + 1 + m - 1)/(m + 1 - m - 1)`
[ পুনরায় যোজন-বিয়োজন করে ]
বা, `(2x^3 + 6x)/(2 + 2x^2) = (2m)/2`
বা, `(2(x^3 + 3x))/(2(1 + 3x^2)) = m`
বা, `x^3 + 3x = m + 3mx^2` [ আড় গুণন করে ]
`:. x^3 - 3mx^2 + 3x - m = 0` ( প্রমাণিত )