Question:If v be the volume and S be the surface area of a cuboid of dimensions a, b, c, then `1/v` is equal to :
A `s/2 (a + b + c)` B `2/s (1/a + 1/b + 1/c)` C `(2s)/(a + b + c)` D `2s (a + b + c)`
+ AnswerB
+ Explanation`1/v = 1/s xx s/v` `= (2 (ab + bc + ca))/(s xx abc)` `= 2/s (1/a + 1/b + 1/c)`
+ Report