Question:যোগ নির্ণয় কর: ৩.চ. `1/(a^2 - b^2) + 1/(a^2 + ab + b^2) + 1/(a^2 - ab + b^2)` 

Answer `1/(a^2 - b^2) + 1/(a^2 + ab + b^2) + 1/(a^2 - ab + b^2)` `= 1/(a^2 - b^2) + (a^2 - ab + b^2 + a^2 + ab + b^2)/((a^2 + ab + b^2)(a^2 - ab + b^2)` `= 1/(a^2 - b^2) + (2a^2 + 2b^2)/((a^2 + b^2 + ab)(a^2 + b^2 - ab))` ` = 1/(a^2 - b^2) + (2a^2 + 2b^2)/((a^2 + b^2)^2 - (ab)^2)` ` = 1/(a^2 - b^2) + (2a^2 + 2b^2)/(a^4 + 2a^2b^2 + b^4 - a^2b^2)` `= 1/(a^2 - b^2) + (2a^2 + 2b^2)/(a^4 + a^2b^2 + b^4)` `= (a^4 + a^2b^2 + b^4 + 2(a^2 + b^2)(a^2 - b^2))/((a^2 - b^2)(a^4 + a^2b^2 + b^4))` `= (a^4 + a^2b^2 + b^4 + 2(a^4 - b^4))/((a^2 - b^2)(a^4 + a^2b^2 + b^4))` `= (a^4 + a^2b^2 + b^4 + 2a^4 - 2b^4)/((a^2 - b^2) {(a^2)^2 + a^2b^2 + (b^2)^2})` `= (3a^4 + a^2b^2 - b^4)/((a^2)^3 - (b^2)^3)` `= (3a^4 + a^2b^2 - b^4)/(a^6 - b^6)` উত্তর: `(3a^4 + a^2b^2 - b^4)/(a^6 - b^6)` 

+ Report
Total Preview: 666
jog nirony karo: ৩.ch. `1/(a^2 - b^2) + 1/(a^2 + ab + b^2) + 1/(a^2 - ab + b^2)`
Copyright © 2024. Powered by Intellect Software Ltd