Answer সমাধান:
বামপক্ষ `= (2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p)`
`= (2^(p + 1) .3^(2p - q) .5^(p + q) .(2 xx 3)^q)/((2 xx 3)^p .(5 xx 2)^(q + 2) .(3 xx 5)^q)`
`= (2^(p + 1) .3^(2p - q) .5^(p + q) .2^q .3^q)/(2^p .3^p .5^(q + 2) .2^(q + 2) .3^p .5^p)`
`= (2^(p + q + 1) .3^(2p - q - q) .5^(p + q))/(2^(p + q + 2) .3^(p + p) .5^(q + p + 2))`
`= (2^(p + q + 1) .3^(2p) .5^(p + q))/(2^(p + q + 2) .3^(2p) .5^(p + q + 2))`
`= 2^((p + q + 1) - (p + q + 2)) .3^(2p - 2p) .5^((p + q) - (p + q + 2))`
`= 2^(p + q + 1 - p - q - 2) .3^0 .5^(p + q - p - q - 2)`
`= 2^(- 1) . 1 . 5^(- 2)`
`= 1/2 . 1 . 1/5^2`
`= 1/2 . 1 . 1/25`
`= 1/50`
`:. (2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p) `
`= 1/50` প্রমাণিত