1. Question: The value of `5^1∕4 xx (125)^0.25` is ;

    A
    `sqrt(5)`

    B
    `5sqrt(5)`

    C
    `5`

    D
    `25`

    Note: `5^1∕4 xx (125)^0.25` `= 5^0.25 xx (5^3)^0.25` `= 5^0.25 xx 5^(3 xx 0.25)` `= 5^0.25 xx 5^0.75` `= 5^(0.25 + 0.75)` `= 5^1` `= 5`.
    1. Report
  2. Question: The value of` (32/243)^(-4∕5)` is :

    A
    `4/9`

    B
    `9/4`

    C
    `16/8`

    D
    `81/16`

    Note: `(32/243)^(-4∕5)` `= (243/32)^(4∕5)` `= (3^5/2^5)^(4∕5)` `= [(3/2)^5]^(4∕5)` `= (3/2)^(5 xx (4/5)` `= (3/2)^4` `= (3^5/2^5)^(4∕5)` `= [(3/2)^5]^(4∕5)` `= (3/2)^4` `= 3^4/2^4` `= 81/16`
    1. Report
  3. Question: `(1/216)^(-2∕3) ÷ (1/27)^(-4∕3)` = ?

    A
    `3/4`

    B
    `2/3`

    C
    `4/9`

    D
    `1/8`

    Note: `(1/216)^(-2∕3) ÷ (1/27)^(-4∕3)` `= (216)^(2∕3) ÷ (27)^(4∕3)` `= (6^3)^(2∕3) ÷ (3^3)^(4∕3)` `= 6^(3 xx 2/3) ÷ 3^(3 xx 4/3)` `= 6^2 ÷ 3^4` `= 36/81` `= 4/9`
    1. Report
  4. Question: `(2^(n + 4) - 2.2n)/(2.2^(n + 3)) + 2^-3` is equal to :

    A
    `2^n + 1`

    B
    `- 2^(n + 1) + 1/8`

    C
    `(9)/(8) - 2^n`

    D
    `1`

    Note: Given Exp.` = (2^n . 2^4 - 2. 2^n)/(2 . 2^n . 2^3) + 1/2^3` `= (2^n (2^4 - 2))/(2^n (2 . 2^3)) + 1/2^3` `= ((16 - 2)/16 + 1/8)` `= (7/8 + 1/8)` `= 1`
    1. Report
  5. Question: If `5sqrt(5) xx 5^3 -: 5^(-3∕2) = 5^(a + 2)` the of a is :

    A
    4

    B
    5

    C
    6

    D
    8

    Note: `(5sqrt(5) xx 5^3)/(5^(-3∕2)` `= 5^(a + 2) <=> (5^(3∕2) xx 5^3)/(5^(-3∕2)` `= 5^(a + 2)` `:. 5(3/2 + 3 + 3/2)` `= 5^(a + 2) or 5^6` `= 5^(a + 2)` `:. a + 2 = 6 or a = 4`
    1. Report
  6. Question: If `sqrt(n^n) = 64` then the value of n is :

    A
    2

    B
    4

    C
    6

    D
    12

    Note: `sqrt(2^n) = 64 <=> 2^(n∕2)` `= 64 = 2^6` `:. n/2 = 6 or n = 12.`
    1. Report
  7. Question: `((0.6)^0 - (0.1)^-1)/((3/2^3)^-1 . (3/2)^3 + (- 1/3)^-1)` is equal is :

    A
    `- 3/2`

    B
    `- 1/2`

    C
    `2/3`

    D
    `3/2`

    Note: Given Exp. `= (1 - (1/10)^-1)/((2^3/3) . (3/3)^3 + (-3)^1` `= (1 - 10)/(2^3/3 . 3^3/2^3 - 3)` `= -9/(9 - 3)` `= -9/6` `= -3/2.`
    1. Report
  8. Question: If` (9^n xx 3^5 xx (27)^3)/(3 xx (81)^4) = 27`, then, n equals :

    A
    0

    B
    2

    C
    3

    D
    4

    Note: `(9^n xx 3^5 xx (27)^3)/(3 xx (81)^4)` `= 27 => (3^2n xx 3^5 xx (3^3)^3)/(3 xx (3^4)^4` `= 3^3` `= (3^2n xx 3^5 xx 3^9)/(3^1 xx 3^16)` `= 3^3 or 3^(2n + 5 + 9)` `= 3^3 xx 3^1 xx 3^16 or 3^(2n + 14)` `= 3^20 `:. 2n + 14` `= 20 or 2n` `= 6 or n = 3`
    1. Report
  9. Question: If ` (9^n (3^2) (3^(-n/2))^ (- 2) - 27^n)/(3^3m (2^3))= 1/27,` then

    A
    m - n = 2

    B
    m - n = 1

    C
    m - n = -2

    D
    m - n = -1

    Note: Not available
    1. Report
  10. Question: If `((9^n (3^2) (3^(-n/2))^(-2) - 27^n))/(3^3m (2^3)) = 1/27,` then

    A
    m - n = 2

    B
    m - n = 1

    C
    m - n = -2

    D
    m - n = -1

    Note: Not available
    1. Report
Copyright © 2024. Powered by Intellect Software Ltd