Question:১৬. প্রমাণ কর: `(x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a) = 1`
Answer সমাধান: বামপক্ষ `= (x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a)` `= (x^(a - b))^(a + b) . (x^(b - c))^(b + c) . (x^(c - a))^(c + a)` `= x^((a - b)(a + b)) . x^((b - c)(b + c)) . x^((c - a)(c + a))` `= x^(a^2 - b^2) . x^(b^2 - c^2) . x^(c^2 - a^2)` `= x^(a^2 - b^2 + b^2 - c^2 + c^2 - a^2)` `=x^0` `= 1` `=` ডানপক্ষ `:. (x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a) ` `= 1` (প্রমাণিত)
+ Report
১৬. proman karo: `(x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a) = 1`