Question:`x^2 - sqrt(2) x = 1` হলে--- ক. দেখাও যে, `x - 1/x = sqrt(2)` খ. দেখাও যে, `7(x^2 + 1/x^2) = 2(x^4 + 1/x^4)` গ. মান নির্ণয় কর : `(x^4 - 1/x^4)/(x + 1/x)` 

Answer ক. দেওয়া আছে, `x^2 - sqrt(2) x = 1` বা, `x^2 - 1 = sqrt(2x)` বা, `(x^2 - 1)/x = sqrt(2)` বা, `x^2/x - 1/x = sqrt(2)` :. `x - 1/x = sqrt(2)` (দেখানো হলো) খ. বামপক্ষ `= 7(x^2 + 1/x^2)` ` = 7{(x)^2 + (1/x)^2}` ` = 7{(x - 1/x)^2 + 2.x. 1/x}` ` = 7{7(sqrt(2)^2 + 2}` [’ক’ হতে] `= 7 (2 + 2)` `= 7 xx 4` `= 28` ডানপক্ষ `= 2(x^4 + 1/x^4) = 2{(x^2)^2 + (1/x^2)^2}` `= 2{(x^2 + 1/x^2)^2 - 2.x^2. 1/x^2}` `= 2{(x^2 + 1/x^2)^2 - 2}` `= 2[{(x - 1/x)^2 + 2. x. 1/x}^2 - 2]` `= 2[{(sqrt(2))^2 + 2}^2 - 2]` [’ক’ হতে] `= 2[(4)^2 - 2]` `= 2 xx 14` = 28 :.` 7 (x^2 + 1/x^2) = 2(x^4 + 1/x^4)` (দেখানো হলো) গ. `(x^4 - 1/x^4)/(x + 1/x) = ((x^2)^2 - (1/x^2)^2)/(x + 1/x)` `= ((x^2 + 1/x^2) (x + 1/x) (x - 1/x))/(x + 1/x)` `= (x^2 + 1/x^2) (x - 1/x)` `= 4 xx sqrt(2)` [’খ’ হতে] `= 4sqrt(2)` 

+ Report
Total Preview: 690
`x^2 - sqrt(2) x = 1` hole--- ka. dekhao je, `x - 1/x = sqrt(2)` kh. dekhao je, `7(x^2 + 1/x^2) = 2(x^4 + 1/x^4)` ga. man nirony kar : `(x^4 - 1/x^4)/(x + 1/x)`
Copyright © 2024. Powered by Intellect Software Ltd