Question:`x^2 - sqrt(2) x = 1` হলে---
ক. দেখাও যে, `x - 1/x = sqrt(2)`
খ. দেখাও যে, `7(x^2 + 1/x^2) = 2(x^4 + 1/x^4)`
গ. মান নির্ণয় কর : `(x^4 - 1/x^4)/(x + 1/x)`
Answer ক. দেওয়া আছে,
`x^2 - sqrt(2) x = 1`
বা, `x^2 - 1 = sqrt(2x)`
বা, `(x^2 - 1)/x = sqrt(2)`
বা, `x^2/x - 1/x = sqrt(2)`
:. `x - 1/x = sqrt(2)` (দেখানো হলো)
খ. বামপক্ষ
`= 7(x^2 + 1/x^2)`
` = 7{(x)^2 + (1/x)^2}`
` = 7{(x - 1/x)^2 + 2.x. 1/x}`
` = 7{7(sqrt(2)^2 + 2}` [’ক’ হতে]
`= 7 (2 + 2)`
`= 7 xx 4`
`= 28`
ডানপক্ষ
`= 2(x^4 + 1/x^4) = 2{(x^2)^2 + (1/x^2)^2}`
`= 2{(x^2 + 1/x^2)^2 - 2.x^2. 1/x^2}`
`= 2{(x^2 + 1/x^2)^2 - 2}`
`= 2[{(x - 1/x)^2 + 2. x. 1/x}^2 - 2]`
`= 2[{(sqrt(2))^2 + 2}^2 - 2]` [’ক’ হতে]
`= 2[(4)^2 - 2]`
`= 2 xx 14`
= 28
:.` 7 (x^2 + 1/x^2) = 2(x^4 + 1/x^4)` (দেখানো হলো)
গ. `(x^4 - 1/x^4)/(x + 1/x) = ((x^2)^2 - (1/x^2)^2)/(x + 1/x)`
`= ((x^2 + 1/x^2) (x + 1/x) (x - 1/x))/(x + 1/x)`
`= (x^2 + 1/x^2) (x - 1/x)`
`= 4 xx sqrt(2)` [’খ’ হতে]
`= 4sqrt(2)`