Answer ক. দেওয়া আছে,
`x = 3 + 2sqrt(2)`
`:. 1/x = 1/(3 + 2sqrt(3))`
`= (3 - 2sqrt(2))/(3 + 2sqrt(2)) (3 - 2sqrt(2))`
`= (3 - 2sqrt(2))/(9 - 8)`
`= 3 - 2sqrt(2)`
`:. 1/x = 3 - 2sqrt(2)` (Ans)
খ. দেওয়া আছে,
`x = 3 + 2sqrt(2)`
বা, `x = 2 + 2sqrt(2) + 1`
বা, `x = (sqrt(2))^2 + 2.sqrt(2.1) + (1)^2`
বা, `x = (sqrt(2 + 1))^2`
:. `sqrt(x) = sqrt(2 + 1)............`(i)
এখন, `1/sqrt(x) = 1/(sqrt(2 + 1)`
`= (sqrt(2 - 1))/((sqrt(2 + 1)) (sqrt(2 - 1))`
`= (sqrt(2 - 1))/(2 - 1)`
`:. 1/sqrt(x) = sqrt(2 - 1)`..............(ii)
এখন, `x^(3/2) - x^((1/3)/2)`
`= (sqrt(x))^3 - (1/sqrt(x))^3`
`= (sqrt(x - 1)/sqrt(x))^3 + 3.sqrt(x) . 1/sqrt(x) (sqrt(x) - 1/sqrt(x))`
`= (sqrt(2 + 1 - sqrt(2 + 1))^3 + 3(sqrt(2 + 1 - sqrt(2 + 1))`
`= (2)^3 + 3(2)`
`= 8 + 6`
= 14 (Ans)
গ. দেওয়া আছে,
’ক’ থেকে পাই, `x = 3 + 2sqrt(2)`
`1/x = 3 - 2sqrt(2)`
বামপক্ষ
`= x^4 + 1/x^4`
`= (x^2)^2 + (1/x^2)^2`
`= (x^2 + 1/x^2)^2 - 2.x^2.1/x^2`
`= {(x + 1/x)^2 - 2.x. 1/x}^2 - 2`
`= {(3 + 2sqrt(2 )+ 3 - 2sqrt(2))^2 - 2}^2 - 2` [x ও `1/x` এর মান বসিয়ে]
`= {(6)^2 - 2}^2 - 2`
`= (36 - 2)^2 - 2`
`= (34)^2 - 2`
`= 1156 - 2`
`= 1154`
= ডানপক্ষ
`:. x^4 + 1/x^4 = 1154` (প্রমাণিত)