Question:যদি `x = 3 + 2sqrt(2)` হয় তবে ক. `1/x` এর মান কত? খ. `x^(3/2) - 1/x^(3/2)` এর মান নির্ণয় কর। গ. প্রমাণ কর যে, `x^4 + 1/x^4 = 1154` 

Answer ক. দেওয়া আছে, `x = 3 + 2sqrt(2)` `:. 1/x = 1/(3 + 2sqrt(3))` `= (3 - 2sqrt(2))/(3 + 2sqrt(2)) (3 - 2sqrt(2))` `= (3 - 2sqrt(2))/(9 - 8)` `= 3 - 2sqrt(2)` `:. 1/x = 3 - 2sqrt(2)` (Ans) খ. দেওয়া আছে, `x = 3 + 2sqrt(2)` বা, `x = 2 + 2sqrt(2) + 1` বা, `x = (sqrt(2))^2 + 2.sqrt(2.1) + (1)^2` বা, `x = (sqrt(2 + 1))^2` :. `sqrt(x) = sqrt(2 + 1)............`(i) এখন, `1/sqrt(x) = 1/(sqrt(2 + 1)` `= (sqrt(2 - 1))/((sqrt(2 + 1)) (sqrt(2 - 1))` `= (sqrt(2 - 1))/(2 - 1)` `:. 1/sqrt(x) = sqrt(2 - 1)`..............(ii) এখন, `x^(3/2) - x^((1/3)/2)` `= (sqrt(x))^3 - (1/sqrt(x))^3` `= (sqrt(x - 1)/sqrt(x))^3 + 3.sqrt(x) . 1/sqrt(x) (sqrt(x) - 1/sqrt(x))` `= (sqrt(2 + 1 - sqrt(2 + 1))^3 + 3(sqrt(2 + 1 - sqrt(2 + 1))` `= (2)^3 + 3(2)` `= 8 + 6` = 14 (Ans) গ. দেওয়া আছে, ’ক’ থেকে পাই, `x = 3 + 2sqrt(2)` `1/x = 3 - 2sqrt(2)` বামপক্ষ `= x^4 + 1/x^4` `= (x^2)^2 + (1/x^2)^2` `= (x^2 + 1/x^2)^2 - 2.x^2.1/x^2` `= {(x + 1/x)^2 - 2.x. 1/x}^2 - 2` `= {(3 + 2sqrt(2 )+ 3 - 2sqrt(2))^2 - 2}^2 - 2` [x ও `1/x` এর মান বসিয়ে] `= {(6)^2 - 2}^2 - 2` `= (36 - 2)^2 - 2` `= (34)^2 - 2` `= 1156 - 2` `= 1154` = ডানপক্ষ `:. x^4 + 1/x^4 = 1154` (প্রমাণিত) 

+ Report
Total Preview: 619
jodi `x = 3 + 2sqrt(2)` hoy tobe ka. `1/x` ar man koto? kh. `x^(3/2) - 1/x^(3/2)` ar man nirony karo. ga. proman kar je, `x^4 + 1/x^4 = 1154`
Copyright © 2024. Powered by Intellect Software Ltd