1. Question:By using the factors of `x^2` - `y^2`, evaluate `96^2` - 36 

    Answer
    `x^2` - `y^2`
    =(x+y)(x-y)
    `:.` `96^2` - 36
    = `96^2` - `6^2`
    =(96+6) (96-6)
    =102+90
    =192

    1. Report
  2. Question:3`y^2` + 81 

    Answer
    3`y^2` + 81
    =3(`y^2`+27)

    1. Report
  3. Question:Factorise `a^2` +2ab +`b^2` 

    Answer
    `a^2` +2ab +`b^2`
    =`a^2` + ab +ab +`b^2`
    =a(a+b) +b(a+b) 
    =(a+b) (a+b)
    =`(a+b)^2`

    1. Report
  4. Question:What number must be added to (`x^2` +6x) to make the result a perfect square? 

    Answer
    (`x^2` + 6x)
    =`x^2` + `2.x.3` + `3^2` - 9
    =`(x+3)^2` - 9               [here `(x+3)^2` is perfect square ]
    
    `:.`  to make (`x^2` +6x) perfect , 9 must be added

    1. Report
  5. Question:what number must be added to (`x^2` -18x) to make the result a perfect square? 

    Answer
    (`x^2` -18x)
    =`x^2` - 2 . x .9 +`9^2` - 81
    =`(x-9)^2` - 81                        [ here `(x-9)^2` is perfect squire ]
    
    
    `:.`  to make (`x^2` - 18x) perfect , 81 must be added

    1. Report
  6. Question:Factorise ax + 3a - xy -3y 

    Answer
    ax + 3a - xy -3y
    =a(x+3) - y(x+3)
    =(x+3) (a-y)

    1. Report
  7. Question:Factorise a `(x+1)^2` + (x+1) 

    Answer
    a `(x+1)^2` + (x+1)
    =(x+1) {a(x+1) + 1}
    =(x+1) (ax+a+1)

    1. Report
Copyright © 2024. Powered by Intellect Software Ltd