1. Question: The value of` 4sqrt((625))^3` i, s :

    A
    25

    B
    125

    C
    `3sqrt(1875)`

    D
    None

    Note: `4sqrt((625))^3 = (625)^(3/4) = (5^4)^(3/4)` `= 5^(4 xx 3/4)` `= 5^3 = 125`
    1. Report
  2. Question: If` (125)^x = 3125,` then x equal :

    A
    `3/5`

    B
    `5/3`

    C
    `1/4`

    D
    `1/5`

    Note: `(125)^x = 3125` ` => (5^3)^x = 5^5 => 3x` ` = 5 => x = 5/3`
    1. Report
  3. Question: The value of` (36 xx 36 xx 36 + 14 xx 14 xx 14)/(36 xx 36 + 14 xx 14 - 36 xx 14)` is :

    A
    `22`

    B
    `50`

    C
    `5100`

    D
    `132`

    Note: Given Exp.` = (a^3 + b^3)/((a^2 + b^2 - ab))` `= (a + b) = (36 + 14) = 50`
    1. Report
  4. Question: The value of` (0.63 + 0.37)` is :

    A
    `1.01`

    B
    `.101`

    C
    `1.01`

    D
    `1.001`

    Note: `0.63 = 63/99` and `0.37 = 37/99.` `:. 0.63 + 0.37 = 63/99 + 37/99` `= 100/99 = 1 1/99 = 1.01`
    1. Report
  5. Question: If` 1/(3.718) = .2689,` then the value of` 1/(.0003718)` is :

    A
    `2689`

    B
    `2.689`

    C
    `26890`

    D
    `.2689`

    Note: `1/(0.0003718)` `= (10000)/(3.718)` `= 10000 xx .2689` `= 2689`
    1. Report
  6. Question: `(0.333.......) xx (0.444.....) =?`

    A
    `0.121212`

    B
    `1.333`

    C
    `0.777`

    D
    `0.148148148......`

    Note: Given Exp.` = 0.3 xx 0.4 = 3/9 xx 4/9` `= 4/27` `= 0.148148148.......`
    1. Report
  7. Question: Which the largest among the following fractions ? `5/8, 2/3, 7/9, 3/5, 4/7`

    A
    `5/8`

    B
    `7/9`

    C
    `4/7`

    D
    `2/3`

    Note: `5/8 = 0.625, 2/3` `= 0.666, 7/9,` `= 0.777, 3/5` `= 0.6, 4/7 = 0.571` Clearly,` 7/9` is the largest
    1. Report
  8. Question: The value of` ((3.06)^3 - (1.98))/((3.06)^2 + (3.06 xx 1.98) + (1.98)^2) = ?`

    A
    `5.04`

    B
    `1.08`

    C
    `2. 16`

    D
    `1.92`

    Note: Given Exp.` = ((^3 - b^3))/((a^2 + ab + b^2)` `= a - b = (3.06 - 1.98)` `= 1.08`
    1. Report
  9. Question: `0.04 xx ? = .000016`

    A
    `4`

    B
    `.04`

    C
    `.0004`

    D
    None

    Note: Let` .04 xx x = .000016.` Then, `x = (.000016)/(.04)` `= (.0016)/4` `= .0004`.
    1. Report
  10. Question: The value of` (2^(1/2) . 3^(1/3) . 4^(1/4))/(10^(-1/5) . 5^(3/5)) -: 3^(4/3 . 5^(-7/5))/(4^(-3/5) . 6)` is :

    A
    5

    B
    6

    C
    10

    D
    15

    Note: Given Exp.` (2^(1/2) xx 3^(1/3) xx (2^2)^(1/4))/(2^(-1/5) xx 5^(-1/5) xx 5^(3/5)) -: (3^(4/3) xx 5^(-7/5))/((2^2)^(-3/5) xx 2 xx 3)` `= (2^(1/2) xx 3^(1/3) xx 2^(1/2))/(2^(-1/5) xx 5^(-1/5) xx 5^(3/5) xx (2^(-6/5) xx 2 xx 3)/(3^(4/3) xx 5^(-7/5))` `= (2^((1/2 + 1/2 - 5/6 + 1/5 + 1)) xx 3^((1/3 + 1 - 4/3)))/(5^(- 1/5 + 3/5 - 7/5))` `= (2 xx 3^0)/(5^(-1)` `= 2 xx 1 xx 5 = 10`
    1. Report
Copyright © 2024. Powered by Intellect Software Ltd