1. Question:Without actual division show that `52563744` is divisible by `24`. 

    Answer
    `24=3 xx 8` are co-prime.
    The sum of the digits is given number is `36`, which is divisible by `3`.
    So, the given number is divisible by `3`.
    The number formed by the last 3-digits of the given number is `744`, which is divisible by `8`.
    So, the given number is divisible by `8`.
    Thus, the given number is divisible by both `3` and `8`, where `3` and `8` are co-prime.
    So, it is divisible by `3 xx 8` , i.e. `24`.

    1. Report
  2. Question:Multiply `5793405` by `99999` by short cut method. 

    Answer
    `5793405 xx 99999` 
    `= 5793405 xx (100000 - 1)`                        
    `= (579340500000 - 5793405)`                        
    `= 579334706595.`

    1. Report
  3. Question:Evaluate: i) `896 xx 137 + 986 xx 863 ` ii) `983 xx 207 - 983 xx 107` 

    Answer
    i) `986 xx 137 + 986 xx 863` 
    `= 986 ( 137 + 863 )`
    `= 986 xx 1000`
    `= 980000.`
    
    ii) `983 xx 207 - 983 xx 107`
    ` = 983 xx ( 207 - 107)`
    `= 983 xx 100 = 98300.`

    1. Report
  4. Question:Evaluate following expressions: i) `( 527 xx 527 xx 527 + 183 xx 183 xx 183)/(527 xx 527 - 527 xx 183 + 183 xx 183)` ii) `(458 xx 458 xx 458 - 239 xx 239 xx 239)/(458 xx 458 xx + 458 xx 239 + 239 xx 239)` iii) `((614 + 168)^2 - (614 - 168)^2)/(614 xx 168)` iv) `((832 + 278)^2 + (832 - 278)^2)/(832 xx 832 + 278 xx 278)` 

    Answer
    i) Given Expression 
    
     `= ((527)^3 + (183)^3)/((527)^2 - 527 xx 183 + (183)^2)`
    
     `= (a^3 + b^3)/(a^2 - ab + b^2)`
    
     `= (a + b) = (527 + 183) + 710)`
    
    
     ii) Given Expression 
    
     `= ((458)^3-(239)^3)/((458)^2 + 458 xx 239 + (239)^2)`
    
     `= (a^3-b^3)/(a^2 + ab + b^2)`
    
     `= (a - b) = (457 - 239) = 219)`
    
    
     iii) Given Expression
    
     `= ((a + b)^2 - (a - b)^2)/(ab)` 
    
     `= (4ab)/4`
    
     `= 4`
    
    
     iv) Given Expression
    
     `= ((a + b)^2 + (a - b)^2)/(a^2 + b^2)`
    
     `= (2(a^2 + b^2))/(a^2 + b^2)`
    
     `= 2`

    1. Report
  5. Question:On dividing `15968` by a certain number, the quotient is `89` and the remainder is `37`. Find the divisor. 

    Answer
    Divisor = `(text{Dividend - Remainder})/text{Quotient} = (15968 - 37)/89 = 179`

    1. Report
  6. Question:Convert the following into vulgar fractions: `i) 0.75` `ii) 3.004` `iii) .0056` 

    Answer
    i) `.075`
    
      `= 75/100`
    
     ` = 3/4`
    
     ii) `3.004` 
    
      `= 3004/1000`
    
     ` = 751/250`
    
     iii) `.0056/10000` 
    
        `= 7/1250`

    1. Report
  7. Question:Simplify the following fractions: i) `1.84/2.99` ii) `.365/.584` 

    Answer
    i) `1.84/2.99` = `184/299` = `8/13`
    ii) `.365/.584` = `365/584` = `5/8`

    1. Report
  8. Question:The H.C.F of two numbers is 11 and their L.C.M is 693. If one of the numbers is 77, find the other. 

    Answer
    The other number = `((11xx693)/77) = 99`

    1. Report
  9. Question:Find the largest number that can exactly divide `513, 713` and `1107`. 

    Answer
    Required number 
    = H.C.F. of `513, 783` and `1107`.
    Now, `513 = 3^3 xx 19,` 
    ` 783 = 3^3 xx 29,` and 
    `1107 = 3^3 xx 41`
    `:.` H.C.F. = `3^3 = 27`
    Hence, the required number is `27`

    1. Report
  10. Question:Find the greatest number which can divide 284, 698 and 1618 leaving the same remainder 8 in each case. 

    Answer
    Required number = 
    H.C.F. of `(284 - 8), (698 - 8)` & `(1618 - 8)`
    = H.C.F. of `276, 690` and `1610.`
    
    Now, 
    `276 = 2^2 xx 3 xx 23,`
    `690 = 2 xx 3 xx 5 xx 23,` 
    `1610 = 2 xx 5 xx 7 xx 23`
    
    `:.` H.C.F. of `276, 690` & `1610` is `23`.
    Hence, the required number is `23`.

    1. Report
Copyright © 2024. Powered by Intellect Software Ltd