Answer ক. দেওয়া আছে, `x + 1/x = 2sqrt(2)`
`:. x^2 + 1/x^2 = (x + 1/x)^2 - 2.x.1/x`
`= (2sqrt(2))^2 - 2 = 4.2 - 2 = 8 - 2`
`= 6` (Ans)
খ. এখন, `x^4 + 1/x^4 = (x^2)^2 + (1/x^2)^2`
`= (x^2 + 1/x^2)^2 - 2.x^2. 1/x^2`
`= {(x + 1/x)^2 - 2.x.1/x}^2 - 2`
`= {(2sqrt(2))^2 - 2}^2 - 2`
`= (8 - 2)^2 - 2`
`= 6^2 - 2 = 36 - 2`
`= 34` (Ans)
গ. বামপক্ষ`= x^3 + 1/x^3`
`= (x + 1/x)^3 - 3.x.1/x. (x + 1/x)`
`= (2sqrt(2))^3 - 3(2sqrt(2))`
`= 2^3.(sqrt(2))^3 - 6sqrt(2)`
`= 8.2sqrt(2) - 6sqrt(2)`
`= 16sqrt(2) - 6sqrt(2)`
`= 10sqrt(2)`
= ডানপক্ষ
:.` x^3 + 1/x^3 = 10sqrt(2)` (দেখানো হলো)