Question:উৎপাদকে বিশ্লেষণ কর: `2x^4 - 3x^3 - 3x - 2`
Answer মনে করি, `f(x) = 2x^4 - 3x^3 - 3x - 2` তাহলে, `f(2) = 2.2^4 - 3.2^4 - 3.2 - 2` `= 32 - 24 - 6 - 2` = 32 - 32 = 0 :. (x - 2), f(x) এর একটি উৎপাদক। এখন, `2x^4 - 3x^3 - 3x - 2` `= 2x^4 - 4x^3 + x^3 - 2x^2 + 2x^2 - 4x + x - 2` `= 2x^3 (x - 2) + x^2 (x - 2) + 2x (x - 2) + 1(x - 2)` `= (x - 2) (2x^3 + x^2 + 2x + 1)` `= (x - 2) {x^2 (2x + 1) + 1(2x + 1)}` `= (x - 2) (x^2 + 1) (2x + 1)` (Ans)
+ Report
utpadoke bisholeshn karo: `2x^4 - 3x^3 - 3x - 2`