Question:`x^2 - 2sqrt(42) - 13 = 0; x > 0`
ক. দেখাও যে, `x = sqrt(7) + sqrt(6)`
খ. প্রমাণ কর যে, `x^3 + 1/x^3 = 50sqrt(7)`
গ. `(x^5 - 1/x^5)` এর মান নির্ণয় কর।
Answer ক. দেওয়া আছে, `x^2 - 2sqrt(42) - 13 = 0`
বা, `x^2 = 13 + 2sqrt(42)`
বা, `x^2 = 7 + 2sqrt(42) + 6`
বা, `x^2 = (sqrt(7))^2 + 2.sqrt(7).sqrt(6) + (sqrt(6))^2`
বা, `x^2 = (sqrt(7) + sqrt(6))^2`
`:. x = sqrt(7) + sqrt(6)` (দেখানো হলো)
খ. এখন, `1/x = 1/(sqrt(7) + sqrt(6)`
বা, `1/x = (1. sqrt(7) - sqrt(6))/((sqrt(7) + sqrt(6)) (sqrt(7) - sqrt(6))`
বা, `1/x = (sqrt(7) - sqrt(6))/((sqrt(7))^2 - (sqrt(6))^2`
বা, `1/x = (sqrt(7) - sqrt(6))/(7 - 6)`
বা, `1/x = sqrt(7) - sqrt(6)`
`:. x + 1/x = sqrt(7) + sqrt(6) + sqrt(7) - sqrt(6)`
`:. x + 1/x = 2sqrt(7)`
বামপক্ষ `= x^3 + 1/x^3`
`= (x + 1/x)^3 - 3.2sqrt(7)` [মান বসিয়ে]
`= 56sqrt(7) - 6sqrt(7)`
`= 50sqrt(7)`
= ডানপক্ষ
`:. x^3 + 1/x^3 = 50sqrt(7)`
গ. এখন, `x - 1/x = (sqrt(7) + sqrt(6)) - (sqrt(7) - sqrt(6))`
`= sqrt(7) + sqrt(6) - sqrt(7) + sqrt(6) = 2sqrt(6)`
`:. x^2 + 1/x^2 = (x + 1/x)^2 - 2.x.1/x`
`= (2sqrt(7))^2 - 2` [মান বসিয়ে]
`= 28 - 2 = 26`
এখন, `x^3 - 1/x^3 = (x - 1/x)^3 + 3.x.1/x (x - 1/x)`
`= (2sqrt(6))^3 + 3.2sqrt(6)` [মান বসিয়ে]
` = 48sqrt(6) + 6sqrt(6) = 54sqrt(6)`
`:. (x^2 + 1/x^2) (x^3 - 1/x^3) = 26 xx 54sqrt(6)`
বা, `x^5 - 1/x + x - 1/x^3 = 1404sqrt(6)`
বা, `(x^5 + 1/x^5) + (x - 1/x) = 1404sqrt(6)`
বা, `x^5 - 1/x^5 + 2sqrt(6) = 1404sqrt(6)`
বা, `x^5 - 1/x^5 + 2sqrt(6) = 1404sqrt(6)`
বা, `x^5 - 1/x^5 = 1404sqrt(6) - 2sqrt(6) = 1402sqrt(6)`
`:. x^5 - 1/x^5 = 1402sqrt(6)` (Ans)