Question:`x^2 - 2sqrt(30) - 11 = 0, x > 0` ক. x এর মান নির্ণয় কর। খ. দেখাও যে, `x^3 + 1/x^3 = 42sqrt(6)` গ. `(x^2 + 1/x^2) (x^3 - 1/x^3)` এর মান নির্ণয় কর। 

Answer ক. দেওয়া আছে, `x^2 - 2sqrt(30) - 11 = 0, x > 0` বা, `x^2 = 2sqrt(30) + 11` বা, `x^2 = 6 + 2sqrt(30) + 5` বা, `x^2 = (sqrt(6))^2 + 2.sqrt(6).sqrt(5) + (sqrt(5))^2` বা, `x^2 = (sqrt(6) + sqrt(5))^2` `:. x = sqrt(6) + sqrt(5)` খ. যেহেতু `x = sqrt(6) + sqrt(5)` `:. 1/x = 1/(sqrt(6) + sqrt(5))` `= (sqrt(6) - sqrt(5))/(sqrt(6) - sqrt(5)) (sqrt(6) + sqrt(5))` [লব ও হরকে `(sqrt(6) - sqrt(5))` দ্বার গুণ করে ] `= (sqrt(6) - sqrt(5))/(sqrt(6)^2 - (sqrt(5))^2 ` `= (sqrt(6) - sqrt(5))/(6 - 5) = sqrt(6) - sqrt(5)` `:. x + 1/x = 2sqrt(6)` বামপক্ষ `= x^3 + 1/x^3` `= (x + 1/x)^3 - 3.x.1/x (x + 1/x)` `= (2sqrt(6))^3 - 3.2sqrt(6)` `= 48sqrt(6) - 6sqrt(6)` `= 42sqrt(6)` = ডানপক্ষ `:. x^3 + 1/x^3 = 42sqrt(6)` (দেখানো হলো) গ. এখন, `x - 1/x = 2sqrt(5)` `:. x^2 + 1/x^2 = (x - 1/x)^2 + 2.x.1/x = (2sqrt(5))^2 + 2 = 20 + 2 = 22` এবং `x^3 - 1/x^3 = (x - 1/x)^3 + 3.x.1/x (x - 1/x)` `= (2sqrt(5)^3 + 3.2sqrt(5)` `= 40sqrt(5) + 6sqrt(5)` `= 46sqrt(5)` অতএব `(x^2 + 1/x^2) (x^3 - 1/x^3)` `= 22 xx 46sqrt(5) = 1012sqrt(5)` (Ans) 

+ ExplanationNot Moderated
+ Report
Total Preview: 1944
`x^2 - 2sqrt(30) - 11 = 0, x > 0` ka. x ar man nirony karo. kh. dekhao je, `x^3 + 1/x^3 = 42sqrt(6)` ga. `(x^2 + 1/x^2) (x^3 - 1/x^3)` ar man nirony karo.
Copyright © 2024. Powered by Intellect Software Ltd