Question:
Answer
Question:
Question:
Question:
Question:১১. প্রমাণ কর: `(4^n - 1)/(2^n - 1) = 2^n + 1`
সমাধান: বামপক্ষ `= (4^n - 1)/(2^n - 1)` `= ((2^2)^n - 1)/(2^n - 1)` `= ((2^n)^2 - 1)/(2^n - 1)` `= ((2^n + 1)(2^n - 1))/((2^n - 1))` [ `:. a^2 - b^2 = (a + b)(a - b)` ] `= 2^n + 1` = ডানপক্ষ `:. (4^n - 1)/(2^n - 1) = 2^n + 1` (প্রমাণিত)
Question:১২. প্রমাণ কর: `(2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p) = 1/50`
সমাধান: বামপক্ষ `= (2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p)` `= (2^(p + 1) .3^(2p - q) .5^(p + q) .(2 xx 3)^q)/((2 xx 3)^p .(5 xx 2)^(q + 2) .(3 xx 5)^q)` `= (2^(p + 1) .3^(2p - q) .5^(p + q) .2^q .3^q)/(2^p .3^p .5^(q + 2) .2^(q + 2) .3^p .5^p)` `= (2^(p + q + 1) .3^(2p - q - q) .5^(p + q))/(2^(p + q + 2) .3^(p + p) .5^(q + p + 2))` `= (2^(p + q + 1) .3^(2p) .5^(p + q))/(2^(p + q + 2) .3^(2p) .5^(p + q + 2))` `= 2^((p + q + 1) - (p + q + 2)) .3^(2p - 2p) .5^((p + q) - (p + q + 2))` `= 2^(p + q + 1 - p - q - 2) .3^0 .5^(p + q - p - q - 2)` `= 2^(- 1) . 1 . 5^(- 2)` `= 1/2 . 1 . 1/5^2` `= 1/2 . 1 . 1/25` `= 1/50` `:. (2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p) ` `= 1/50` প্রমাণিত
Question:১৩.প্রমাণ কর: `(a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m = 1`
সমাধান: বামপক্ষ `=(a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m` `=a^(n1)/a^(mn) . a^(1m)/a^(1n) . a^(mn)/a^(m1)` `= a^(n1 - nm +1m - n1 + nm - 1m)` `= a^0` `= 1` `=`ডানপক্ষ `:. (a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m ` `= 1` (প্রমাণিত)বিকল্প সমাধান: বামপক্ষ `=(a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m` `=(a^(1 - m))^n . (a^(m - n))^1 . (a^(n - 1))^m` `= (a^(n1 - mn)) . (a^(m1 - 1n)) . (a^(mn - m1))` `= a^(n1 - nm + 1m - n1 + nm - 1m)` `= a^0` `= 1` `=`ডানপক্ষ `:. (a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m ` `= 1` (প্রমাণিত)
Question:১৪.প্রমাণ কর: `a^(p + q)/a^(2r) xx a^(q + r)/a^(2p) xx a^(r + p)/a^(2q) = 1`
সমাধান: বামপক্ষ `= a^(p + q)/a^(2r) xx a^(q + r)/a^(2p) xx a^(r + p)/a^(2q)` `= a^(p + q - 2r) . a^(q + r - 2p) . a^(r + p - 2q)` `= a^(p + q - 2r + q + r - 2p + r + p - 2q)` `= a^(2p - 2p + 2q - 2q + 2r - 2r)` `= a^0` `= 1` `=`ডানপক্ষ `:. a^(p + q)/a^(2r) xx a^(q + r)/a^(2p) xx a^(r + p)/a^(2q) ` `= 1` (প্রমাণিত)
Question:১৫.প্রমাণ কর: `(x^a/x^b)^(1/(ab)) . (x^b/x^c)^(1/(bc)) . (x^c/x^a)^(1/(ca)) = 1`
সমাধান: বামপক্ষ `= (x^a/x^b)^(1/(ab)) . (x^b/x^c)^(1/(bc)) . (x^c/x^a)^(1/(ca)) ` `= (x^(a - b))^(1/(ab)) . (x^(b - c))^(1/(bc)) . (x^(c - a))^(1/(ca))` `= x^((a - b)/(ab)) . x^((b - c)/(bc)) . x^((c - a)/(ca))` `= x^((a - b)/(ab) + (b - c)/(bc) + (c - a)/(ca))` `= x^((ca - bc + ab - ca + bc - ab)/(abc))` `= x^(0/(abc))` `= x^0` `= 1` `=`ডানপক্ষ `:. (x^a/x^b)^(1/(ab)) . (x^b/x^c)^(1/(bc)) . (x^c/x^a)^(1/(ca))` ` = 1` (প্রমাণিত)
Question:১৬. প্রমাণ কর: `(x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a) = 1`
সমাধান: বামপক্ষ `= (x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a)` `= (x^(a - b))^(a + b) . (x^(b - c))^(b + c) . (x^(c - a))^(c + a)` `= x^((a - b)(a + b)) . x^((b - c)(b + c)) . x^((c - a)(c + a))` `= x^(a^2 - b^2) . x^(b^2 - c^2) . x^(c^2 - a^2)` `= x^(a^2 - b^2 + b^2 - c^2 + c^2 - a^2)` `=x^0` `= 1` `=` ডানপক্ষ `:. (x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a) ` `= 1` (প্রমাণিত)
Question:১৭. প্রমাণ কর:`(x^p/x^q)^(p + q - r) xx (x^q/x^r)^(q + r - p) xx (x^r/x^p)^(r + p - q) = 1`
সমাধান: বামপক্ষ `= (x^p/x^q)^(p + q - r) xx (x^q/x^r)^(q + r - p) xx (x^r/x^p)^(r + p - q)` `= (x^(p - q))^(p + q - r) xx (x^(q - r))^(q + r - p) xx (x^(r - p))^(r + p - q)` `= x^((p - q)(p + q - r)) xx x^((q - r)(q + r - p)) xx x^((r - p)(r + p - q))` `= x^((p - q)(p + q) - (p - q)r) xx x^((q - r)(q + r) - (q - r)p) xx x^((r - p)(r + p) - (r - p)q)` `= x^(p^2 - q^2 - pr + qr) xx x^(q^2 - r^2 - pq + pr) xx x^(r^2 - p^2 - qr + pq)` `= x^(p^2 - q^2 - pr + qr + q^2 - r^2 - pq + pr + r^2 - p^2 - qr + pq)` `= x^0` `= 1` `=`ডানপক্ষ `:. (x^p/x^q)^(p + q - r) xx (x^q/x^r)^(q + r - p) xx (x^r/x^p)^(r + p - q)` ` = 1` (প্রমাণিত)