1. Question: 

    Answer

    1. Report
  2. Question: 

    Answer

    1. Report
  3. Question: 

    Answer

    1. Report
  4. Question:১১. প্রমাণ কর: `(4^n - 1)/(2^n - 1) = 2^n + 1` 

    Answer
    সমাধান:
    
     বামপক্ষ `= (4^n - 1)/(2^n - 1)`
    
              `= ((2^2)^n - 1)/(2^n - 1)`
    
             `= ((2^n)^2 - 1)/(2^n - 1)`
    
             `= ((2^n + 1)(2^n - 1))/((2^n - 1))` 
                                  [ `:. a^2 - b^2 = (a + b)(a - b)` ]
    
             `= 2^n + 1`
    
               = ডানপক্ষ
    
        `:. (4^n - 1)/(2^n - 1) = 2^n + 1`  (প্রমাণিত)

    1. Report
  5. Question:১২. প্রমাণ কর: `(2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p) = 1/50` 

    Answer
    সমাধান: 
     বামপক্ষ `= (2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p)`
    
           `= (2^(p + 1) .3^(2p - q) .5^(p + q) .(2 xx 3)^q)/((2 xx 3)^p .(5 xx 2)^(q + 2) .(3 xx 5)^q)`
    
           `= (2^(p + 1) .3^(2p - q) .5^(p + q) .2^q .3^q)/(2^p .3^p .5^(q + 2) .2^(q + 2) .3^p .5^p)`
    
           `= (2^(p + q + 1) .3^(2p - q - q) .5^(p + q))/(2^(p + q + 2) .3^(p + p) .5^(q + p + 2))`
                        
           `= (2^(p + q + 1) .3^(2p) .5^(p + q))/(2^(p + q + 2) .3^(2p) .5^(p + q + 2))`
    
           `= 2^((p + q + 1) - (p + q + 2)) .3^(2p - 2p) .5^((p + q) - (p + q + 2))`
    
           `= 2^(p + q + 1 - p - q - 2) .3^0 .5^(p + q - p - q - 2)`
     
           `= 2^(- 1) . 1 . 5^(- 2)`
     
           `= 1/2 . 1 . 1/5^2`
        
           `= 1/2 . 1 . 1/25`
    
           `= 1/50`
    
      `:. (2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p) `
    
          `= 1/50`   প্রমাণিত

    1. Report
  6. Question:১৩.প্রমাণ কর: `(a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m = 1` 

    Answer
    সমাধান: 
      বামপক্ষ 
        `=(a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m`
    
        `=a^(n1)/a^(mn) . a^(1m)/a^(1n) . a^(mn)/a^(m1)`
    
        `= a^(n1 - nm +1m - n1 + nm - 1m)`
    
        `= a^0`
    
        `= 1`
    
        `=`ডানপক্ষ
    
      `:. (a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m `
    
        `= 1`  (প্রমাণিত)বিকল্প সমাধান: বামপক্ষ 
      `=(a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m`
    
      `=(a^(1 - m))^n . (a^(m - n))^1 . (a^(n - 1))^m`
    
      `= (a^(n1 - mn)) . (a^(m1 - 1n)) . (a^(mn - m1))`
    
      `=  a^(n1 - nm + 1m - n1 + nm - 1m)`
    
      `= a^0`
    
      `= 1`
    
      `=`ডানপক্ষ
    
      `:. (a^1/a^m)^n . (a^m/a^n)^1 . (a^n/a^1)^m `
    
        `= 1` (প্রমাণিত)

    1. Report
  7. Question:১৪.প্রমাণ কর: `a^(p + q)/a^(2r) xx a^(q + r)/a^(2p) xx a^(r + p)/a^(2q) = 1` 

    Answer
    সমাধান: 
      বামপক্ষ 
        `= a^(p + q)/a^(2r) xx a^(q + r)/a^(2p) xx a^(r + p)/a^(2q)`
    
        `= a^(p + q - 2r) . a^(q + r - 2p) . a^(r + p - 2q)`
    
        `= a^(p + q - 2r + q + r - 2p + r + p - 2q)`
    
        `= a^(2p - 2p + 2q - 2q + 2r - 2r)`
    
        `= a^0`
    
        `= 1`
    
        `=`ডানপক্ষ
    
       `:. a^(p + q)/a^(2r) xx a^(q + r)/a^(2p) xx a^(r + p)/a^(2q) `
    
       `= 1` (প্রমাণিত)

    1. Report
  8. Question:১৫.প্রমাণ কর: `(x^a/x^b)^(1/(ab)) . (x^b/x^c)^(1/(bc)) . (x^c/x^a)^(1/(ca)) = 1` 

    Answer
    সমাধান:
      বামপক্ষ 
       `= (x^a/x^b)^(1/(ab)) . (x^b/x^c)^(1/(bc)) . (x^c/x^a)^(1/(ca)) `
    
       `= (x^(a - b))^(1/(ab)) . (x^(b - c))^(1/(bc)) . (x^(c - a))^(1/(ca))`
    
       `= x^((a - b)/(ab)) . x^((b - c)/(bc)) . x^((c - a)/(ca))`
    
       `= x^((a - b)/(ab) + (b - c)/(bc) + (c - a)/(ca))`
    
       `= x^((ca - bc + ab - ca + bc - ab)/(abc))`
    
       `= x^(0/(abc))`
    
       `= x^0`
    
       `= 1`
    
       `=`ডানপক্ষ
    
      `:. (x^a/x^b)^(1/(ab)) . (x^b/x^c)^(1/(bc)) . (x^c/x^a)^(1/(ca))`
    
      ` = 1`  (প্রমাণিত)

    1. Report
  9. Question:১৬. প্রমাণ কর: `(x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a) = 1` 

    Answer
    সমাধান: 
     বামপক্ষ 
     `= (x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a)`
    
     `= (x^(a - b))^(a + b) . (x^(b - c))^(b + c) . (x^(c - a))^(c + a)`
    
     `= x^((a - b)(a + b)) . x^((b - c)(b + c)) . x^((c - a)(c + a))`
    
     `= x^(a^2 - b^2) . x^(b^2 - c^2) . x^(c^2 - a^2)`
    
     `= x^(a^2 - b^2 + b^2 - c^2 + c^2 - a^2)`
    
     `=x^0`
    
     `= 1`
    
     `=` ডানপক্ষ
    
     `:. (x^a/x^b)^(a + b) . (x^b/x^c)^(b + c) . (x^c/x^a)^(c + a) `
    
          `= 1`  (প্রমাণিত)

    1. Report
  10. Question:১৭. প্রমাণ কর:`(x^p/x^q)^(p + q - r) xx (x^q/x^r)^(q + r - p) xx (x^r/x^p)^(r + p - q) = 1` 

    Answer
    সমাধান: 
      বামপক্ষ 
      `= (x^p/x^q)^(p + q - r) xx (x^q/x^r)^(q + r - p) xx (x^r/x^p)^(r + p - q)`
    
      `= (x^(p - q))^(p + q - r) xx (x^(q - r))^(q + r - p) xx (x^(r - p))^(r + p - q)`
    
      `= x^((p - q)(p + q - r)) xx x^((q - r)(q + r - p)) xx x^((r - p)(r + p - q))`
    
      `= x^((p - q)(p + q) - (p - q)r) xx x^((q - r)(q + r) - (q - r)p) xx x^((r - p)(r + p) - (r - p)q)`
    
      `= x^(p^2 - q^2 - pr + qr) xx x^(q^2 - r^2 - pq + pr) xx x^(r^2 - p^2 - qr + pq)`
    
      `= x^(p^2 - q^2 - pr + qr + q^2 - r^2 - pq + pr + r^2 - p^2 - qr + pq)`
    
      `= x^0`
    
      `= 1`
    
      `=`ডানপক্ষ
    
    `:. (x^p/x^q)^(p + q - r) xx (x^q/x^r)^(q + r - p) xx (x^r/x^p)^(r + p - q)`
    
       ` = 1`   (প্রমাণিত)

    1. Report
Copyright © 2024. Powered by Intellect Software Ltd