1. Question:৮.সমাধান কর: (vi). `81((1 - x)/(1 + x))^3 = (1 + x)/(1 - x)` 

    Answer
    ৮.(vi).সমাধান: `81((1 - x)/(1 + x))^3 = (1 + x)/(1 - x)`
    
        বা, `81 = (1 + x)/(1 - x) xx ((1 + x)/(1 - x))^3`
    
        বা, `(9)^2 = {((1 + x)/(1 - x))^2}^2`
    
        বা, `((1 + x)/(1 - x))^2 = 9` [ বর্গমূল করে ]
    
        বা, `(1 + x)/(1 - x) = +- 3`   [ বর্গমূল করে ]
    
      হয়, `(1 + x)/(1 - x) = 3`                  
    
        বা, `1 + x = 3 - 3x`                  
    
        বা, `4x = 2`                                
    
        `:. x = 1/2`
        
       অথবা, `(1 + x)/(1 - x) = - 3`
       
        বা, `1 + x = - 3 + 3x`
    
        বা, `2x = 4`                              
         
       `:. x = 2`
    
     `:.` নির্ণেয় সমাধান, `x = 2`
                      অথবা `x = 1/2`

    1. Report
  2. Question:৯.`a/b = c/d` হলে, দেখাও যে, (i). `(a^2 + ab + b^2)/(a^2 - ab + b^2) = (c^2 + cd + d^2)/(c^2 - cd + d^2)` (ii) `(ac + bd)/(ac - bd) = (c^2 + d^2)/(c^2 - d^2)` 

    Answer
    সমাধান: ৯.
    (i).দেওয়া আছে,`a/b = c/d`
    
     ধরি,`a/b = c/d = k`
    
     `:. a = bk` এবং  `c = dk`
    
     বামপক্ষ `=(a^2 + ab + b^2)/(a^2 - ab + b^2)`
    
     `=((bk)^2 + bk xx b + b^2)/((bk)^2 - bk xx b + b^2)`
    
     `=(b^2k^2 + b^2k + b^2)/(b^2k^2 - b^2k + b^2)`
    
     `=(b^2(k^2 + k +1))/(b^2(k^2 - k + 1))`
    
     `=(k^2 + k + 1)/(k^2 - k + 1)`
    
     ডানপক্ষ `=(c^2 + cd + d^2)/(c^2 - cd + d^2)`
    
     `=((dk)^2 + dk xx d + d^2)/((dk)^2 - dk xx d + d^2)`
    
     `=(d^2k^2 + d^2k + d^2)/(d^2k^2 - d^2k + d^2)`
    
     `=(d^2(k^2 + k + 1))/(d^2(k^2 - k + 1))`
    
     `=(k^2 + k + 1)/(k^2 - k + 1)`
    
    `:. (a^2 + ab + b^2)/(a^2 - ab + b^2) = (c^2 + cd + d^2)/(c^2 - cd + d^2)`( দেখানো হলো )
    (ii).দেওয়া আছে,`a/b = c/d`
    
     ধরি,`a/b = c/d = k`
    
     `:. c = dk`
    
        `a = bk`
    
    বামপক্ষ `=(ac + bd)/(ac - bd)`
    
     `=(bk xx dk + bd)/(bk xx dk - bd)`
    
     `=(bdk^2 + bd)/(bdk^2 - bd)`
    
     `=(bd(k^2 + 1))/(bd(k^2 - 1))`
    
     `=(k^2 + 1)/(k^2 - 1)`
    
    ডানপক্ষ `=(c^2 + d^2)/(c^2 - d^2)`
    
     `=((dk)^2 + d^2)/((dk)^2 - d^2)`
    
     `=(d^2k^2 + d^2)/(d^2k^2 - d^2)`
    
     `=(d^2(k^2 + 1))/(d^2(k^2 - 1))`
    
     `=(k^2 + 1)/(k^2 - 1)`
    
    `:. (ac + bd)/(ac - bd) = (c^2 + d^2)/(c^2 - d^2)` ( দেখানো হলো )

    1. Report
  3. Question:১০.`a/b = b/c = c/d` হলে, দেখাও যে, (i).`(a^3 + b^3)/(b^3 + c^3) = (b^3 + c^3)/(c^3 + d^3)` (ii).`(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2` 

    Answer
    ১০.সমাধান:
    (i).দেওয়া আছে,
    
    `a/b = b/c = c/d`
    
     ধরি,
    
    `a/b = b/c = c/d = k`
    
    `:. c = dk`
    
    `b = ck = dk.k = dk^2`
    
    `a = bk = dk^2.k = dk^3`
    
    বামপক্ষ 
    
    `= (a^3 + b^3)/(b^3 + c^3)`
    
    `= ((dk^3)^3 + (dk^2)^3)/((dk^2)^3 + (dk)^3)`
    
    `= (d^3k^9 + d^3k^6)/(d^3k^6 + d^3k^3)`
    
    `= (d^3k^6(k^3 + 1))/(d^3k^3(k^3 + 1))`
    
    `= k^3` 
    
    ডানপক্ষ
    
    `= (b^3 + c^3)/(c^3 + d^3)`
    
    `= ((dk^2)^3 + (dk)^3)/((dk)^3 + d^3)`
    
    `= (d^3k^6 + d^3k^3)/(d^3k^3 + d^3)`
    
    `= (d^3k^3(k^3 + 1))/(d^3(k^3 + 1))`
    
    `= k^3`
    
    `:. (a^3 + b^3)/(b^3 + c^3) = (b^3 + c^3)/(c^3 + d^3)` ( দেখানো হলো )
    (ii).দেওয়া আছে,
    
    `a/b = b/c = c/d`
    
     ধরি,
    
    `a/b = b/c = c/d = k`
    
    `:. c = dk`
    
    `b = ck = dk.k = dk^2`
    
    `a = bk = dk^2.k = dk^3`
    
    বামপক্ষ 
    
    `= (a^2 + b^2 + c^2)(b^2 + c^2 + d^2)`
    
    `= {(dk^3)^2 + (dk^2)^2 + (dk)^2}{(dk^2)^2 + (dk)^2 + d^2}`
    
    `= {d^2k^6 + d^2k^4 + d^2k^2}{d^2k^4 + d^2k^2 + d^2}`
    
    `= d^2k^2(k^4 + k^2 + 1) xx d^2(k^4 + k^2 + 1)`
    
    `= d^4k^2(k^4 + k^2 + 1)^2`
     
     ডানপক্ষ
    
    `= (ab + bc + cd)^2`
    
    `= (dk^3 xx dk^2 + dk^2 xx dk + dk xx d)^2`
    
    `= (d^2k^5 + d^2k^3 + d^2k)^2`
    
    `= {d^2k(k^4 + k^2 + 1)}^2`
    
    `= d^4k^2(k^4 + k^2 + 1)^2`
    
    `:. (a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2` ( দেখানো হলো )

    1. Report
  4. Question:১১.`x = (4ab)/(a + b)` হলে, দেখাও যে, `(x + 2a)/(x - 2a) + (x + 2b)/(x + 2b) = 2, a != b` 

    Answer
    ১০. সমাধান:
    দেওয়া আছে,
    
     `x = (4ab)/(a + b)`
    
    বা, `x = (2a xx 2b)/(a + b)`
    
     `:. x/(2a) = (2b)/(a + b)` 
    
    এবং `x/( 2b) = (2a)/(a + b)`
    
    যখন, `x/(2a) = (2b)/(a + b)`
    
    তখন, `(x + 2a)/(x - 2a) = (2b + a + b)/(2b - a - b)` [ যোজন-বিয়োজন করে ]
    
     `:. (x + 2a)/(x - 2a) = (a + 3b)/(b - a)` .........(i)
    
    আবার, যখন `x/( 2b) = (2a)/(a + b)`
    
    তখন, `(x + 2b)/(x - 2b) = (2a + a + b)/(2a - a - b)` [ যোজন-বিয়োজন করে ]
    
    `:. (x + 2b)/(x - 2b) = (3a + b)/(a - b)`..........(ii)
    
    (i) নং এবং (ii) নং সমীকরণ যোগ করে পাই,
    
     `(x + 2a)/(x - 2a) + (x + 2b)/(x - 2b) = (a + 3b)/(b - a) + (3a + b)/(a - b)`
    
     `=  (a + 3b)/(b - a) + (3a + b)/( - (b - a))`
    
     `= (a + 3b)/(b - a) - (3a + b)/(b - a)`
    
     `= (a + 3b - (3a + b))/(b - a)`
    
     `= (2b - 2a)/(b - a)`
    
     `= (2(b - a))/((b - a))`
    
     `= 2`
    
    `:. (x + 2a)/(x - 2a) + (x + 2b)/(x + 2b) = 2` ( দেখানো হলো )

    1. Report
  5. Question:১২. `x = (root(3)(m + 1) + root(3)(m - 1))/(root(3)(m + 1) - root(3)(m - 1))` হলে, প্রমাণ কর যে, `x^3 - 3mx^2 + 3x - m = 0.` 

    Answer
    ১২. সমাধান:
    দেওয়া আছে,
    
        `x = (root(3)(m + 1) + root(3)(m - 1))/(root(3)(m + 1) - root(3)(m - 1))`
    
    বা, `(x + 1)/(x - 1) =(root(3)(m + 1) + root(3)(m - 1) + root(3)(m + 1) - root(3)(m - 1))/(root(3)(m + 1) + root(3)(m - 1) - root(3)(m + 1) + root(3)(m - 1))` [ যোজন-বিয়োজন করে ]
    
    বা, `(x + 1)/(x - 1) = (2root(3)(m + 1))/(2root(3)(m - 1))`
    
    বা, `(x + 1)/(x - 1) = (root(3)(m + 1))/(root(3)(m - 1))` 
     
    বা, `((x + 1)/(x - 1))^3 = ((root(3)(m + 1))/(root(3)(m - 1)))^3` [ উভয়পক্ষকে ঘন করে ]
    
    বা, `(x^3 + 3x^2 + 3x + 1)/(x^3 - 3x^2 + 3x - 1) = (m + 1)/(m - 1)`
    
    বা, `(x^3 + 3x^2 + 3x + 1 +x^3 - 3x^2 + 3x - 1)/(x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1) = (m + 1 + m - 1)/(m + 1 - m - 1)` 
     [ পুনরায় যোজন-বিয়োজন করে ]
    
    বা, `(2x^3 + 6x)/(2 + 2x^2) = (2m)/2`
    
    বা, `(2(x^3 + 3x))/(2(1 + 3x^2)) = m`
    
    বা, `x^3 + 3x = m + 3mx^2`  [ আড় গুণন করে ]
    
    `:. x^3 - 3mx^2 + 3x - m = 0` ( প্রমাণিত )

    1. Report
  6. Question:নিচের আনুক্রমের সাধারন পদ দেওয়া আছে । অনুক্রমগুলি লেখ : (i)`1/n` (ii) `(n-1)/(n+1)` (iii) `1/2^n` (iv)` 1/2^(n-1)` (v) `(-1)^(n+1)`` n/(n+1)` (vi) `(-1)^(n-1)`` n/(2n+1)` 

    Answer
    (i)  1,`1/2,1/3,........... 1/n.........`
    
    (ii) `0, 1/3, 2/4,3/5,...........(n-1)/(n+1)............`
    
    (iii) `1/2,1/4,1/8 ........ 1/2^n ...............`
    
    (iv) `1,1/2,1/4,........... 1/2^(n-1) ...........`
    
    (v) `1/2, - 2/3,3/4,...........(-1)^(n+1) n/(n+1)............`
    
    (vi) `1/3, - 2/5,3/7............(-1)^(n-1) n/(2n+1)...........`

    1. Report
  7. Question:৩. `A = {2, 3, 4}, B = {1, 2, a}` এবং `C = {2, a, b}` হলে, নিচের সেটগুলো নির্ণয় কর:(ক) B \\ C(খ) `A uu B`(গ) `A nn C`(ঘ) `A uu (B nn C)`(ঙ) `A nn (B uu C)` 

    Answer
    সমাধান:(ক) B \\ C
    দেওয়া আছে,
    
    `B = {1, 2, a}` এবং `C = {2, a, b}`
    
    `:. ` B \\ C` = (1, 2, a} - {2, a, b}`
    
    `= {1}`
    
    `:.` B \\ C` = {1}` (Ans.)(খ)`A uu B`
    দেওয়া আছে,
    
    `A = {2, 3, 4}`এবং`B = {1, 2, a}`
    
    `:.A uu B = {2, 3, 4} uu {1, 2, a}`
    
    `= {1, 2, 3, 4, a}`
    
    `:.A uu B = {1, 2, 3, 4, a}`  (Ans.)(গ)`A nn C`
    দেওয়া আছে,
    `A = {2, 3, 4}`এবং`C = {2, a, b}`
    
    `:.A nn C = {2, 3, 4} nn {2, a, b}`
    
    `= {2}`
    
    `:.A nn C = {2}`     (Ans.)(ঘ)`A uu (B nn C)`
    দেওয়া আছে,
    
    `A = {2, 3, 4}, B = {1, 2, a}`
    
    এবং `C = {2, a, b}`
    
    এখানে,
    
    `(B nn C) = {1, 2, a} nn {2, a, b}`
    
    `= {2, a}`
    
    `:.A uu (B nn C) = {2, 3, 4} uu {2, a}`
    
    `= {2, 3, 4, a}` 
    
    `:.A uu (B nn C) = {2, 3, 4, a}`  (Ans.)(ঙ)`A nn (B uu C)`
    দেওয়া আছে,
    
    `A = {2, 3, 4}, B = {1, 2, a}`
    
    এবং `C = {2, a, b}`
    
    এখানে,
    `(B uu C) = {1, 2, a} uu {2, a, b}`
    
    `= {1, 2, a, b}`
    
    `:.A nn (B uu C) = {2, 3, 4} nn {1, 2, a, b}`
    
    `= {2}`
    
    `:.A nn (B uu C) = {2}`  (Ans.)

    1. Report
  8. Question:৪. `u = {1, 2, 3, 4, 5, 6, 7}, A = {1, 3, 5}, B = {2, 4, 6}`এবং`C = {3, 4, 5, 6, 7}` হলে, নিম্নলিখিত ক্ষেত্রে সত্যতা যাচাই কর: (i). `(A uu B)' = A' nn B'` (ii). `(B nn C)' = B' uu C'` (iii). `(A uu B) nn C = (A nn C) uu (B nn C)` (iv). `(A nn B) uu C = (A uu C) nn (B uu C)` 

    Answer
    সমাধান:
    (i). `(A uu B)' = A' nn B'`
    সেটউপাদান
    `U``1, 2, 3, 4, 5, 6, 7`
    `A``1, 3, 5`
    `B``2, 4, 6`
    `A uu B``1, 2, 3, 4, 5, 6`
    `(A uu B)'``7`
    `A'``2, 4, 6, 7`
    `B'``1, 3, 5, 7`
    `A' nn B'``7`
    `:. (A uu B)' = A' nn B'` (সত্যতা যাচাই হলো)বিকল্প সমাধান: দেওয়া আছে, `U = {1, 2, 3, 4, 5, 6, 7},` `A = {1, 3, 5}` এবং `B = {2, 4, 6}` এখানে, `A uu B = {1, 2, 5} uu {2, 4, 6}` `= {1, 2, 3, 4, 5, 6}` `:. (A uu B)' = U - (A uu B)` `= {1, 2, 3, 4, 5, 6, 7} - {1, 2, 3, 4, 5, 6}` `= {7}` আবার, `A' = U - A` `= {1, 2, 3, 4, 5, 6, 7} - {1, 3, 5}` `= {2, 4, 6, 7}` `B' = U - B` `= {1, 2, 3, 4, 5, 6, 7} - {2, 4, 6}` `= {1, 3, 5, 7}` `:. A' nn B' = {2, 4, 6, 7} nn {1, 3, 5, 7}` `:. (A uu B)' = A' nn B'` (সত্যতা যাচাই হলো) (ii). `(B nn C)' = B' uu C'`
    সেটউপাদান
    `U``1, 2, 3, 4, 5, 6, 7`
    `B``2, 4, 6`
    `C``3, 4, 5, 6, 7`
    `B nn C``4, 6`
    `(B nn C)'``1, 2, 3, 5, 7`
    `B'``1, 3, 5, 7`
    `C'``1, 2`
    `B' uu C'``1, 2, 3, 5, 7`
    `:. (B nn C)' = B' uu C'` (সত্যতা যাচাই হলো)বিকল্প সমাধান: দেওয়া আছে, `U = {1, 2, 3, 4, 5, 6, 7},` `B = {2, 4, 6}` এবং `C = {3, 4, 5, 6, 7}` এখানে, `B nn C = {2, 4, 6} nn {3, 4, 5, 6, 7}` `= {4, 6}` `:. (B nn C)' = U - (B nn C)` `= {1, 2, 3, 4, 5, 6, 7} - {4, 6}` `= {1, 2, 3, 5, 7}` আবার, `B' = U - B` `= {1, 2, 3, 4, 5, 6, 7} - {2, 4, 6}` `= {1, 3, 5, 7}` `C' = U - C` `= {1, 2, 3, 4, 5, 6, 7} - {3, 4, 5, 6, 7}` `= {1, 2}` `:. B' uu C' = {1, 3, 5, 7} uu {1, 2}` `= {1, 2, 3, 5, 7}` `:. (B nn C)' = B' uu C'` (সত্যতা যাচাই হলো) (iii). `(A uu B) nn C = (A nn C) uu (B nn C)`
    সেটউপাদান
    `A``1, 3, 5`
    `B``2, 4, 6`
    `C``3, 4, 5, 6, 7`
    `A uu B``1, 2, 3, 4, 5, 6`
    `(A uu B) nn C``3, 4, 5, 6`
    `A nn C``3, 5`
    `B nn C``4, 6`
    `(A nn C) uu (B nn C)``3, 4, 5, 6`
    `:. (A uu B) nn C = (A nn C) uu (B nn C)` (সত্যতা যাচাই হলো)বিকল্প সমাধান: দেওয়া আছে, `A = {1, 3, 5} B = {2, 4, 6}` এবং `C = {3, 4, 5, 6, 7}` এখানে, `A uu B = {1, 3, 5} uu {2, 4, 6}` `= {1, 2, 3, 4, 5, 6}` `:. (A uu B) nn C = {1, 2, 3, 4, 5, 6} nn {3, 4, 5, 6, 7}` `= {3, 4, 5, 6}` আবার, `A nn C = {1, 3, 5 } nn {3, 4, 5, 6, 7}` `= {3, 5}` `B nn C = {2, 4, 6} nn {3, 4, 5, 6, 7}` `= {4, 6}` `:. (A nn C) uu (B nn C) = {3, 5} uu {4, 6}` `= {3, 4, 5, 6}` `:. (A uu B) nn C = (A nn C) uu (B nn C)` (সত্যতা যাচাই হলো) (iv).`(A nn B) uu C = (A uu C) nn (B uu C)`
    সেটউপাদান
    `A``1, 3, 5`
    `B``2, 4, 6`
    `C``3, 4, 5, 6, 7`
    `A nn B``O/`
    `(A nn B) uu C``3, 4, 5, 6, 7`
    `A uu C``1, 3, 4, 5, 6, 7`
    `B uu C``2, 3, 4, 5, 6, 7`
    `(A uu C) nn (B uu C)``3, 4, 5, 6, 7`
    `:. (A nn B) uu C = (A uu C) nn (B uu C)` (সত্যতা যাচাই হলো)বিকল্প সমাধান: দেওয়া আছে, `A = {1, 3, 5} B = {2, 4, 6}` এবং `C = {3, 4, 5, 6, 7}` এখানে, `A nn B = {1, 3, 5} nn {2, 4, 6}` `= {}` `:. (A nn B) uu C = {} uu {3, 4, 5, 6, 7}` `= {3, 4, 5, 6, 7}` আবার, `A uu C = {1, 3, 5} uu {3, 4, 5, 6, 7}` `= {1, 3, 4, 5, 6, 7}` `B uu C = {2, 4, 6} uu {3, 4, 5, 6, 7}` `= {2, 3, 4, 5, 6, 7}` `:. (A uu C) nn (B uu C) = {1, 3, 4, 5, 6, 7} nn {2, 3, 4, 5, 6, 7}` `= {3, 4, 5, 6, 7}` `:. (A nn B) uu C = (A uu C) nn (B uu C)` (সত্যতা যাচাই হলো)

    1. Report
  9. Question:৫. `Q = {x, y}` এবং `R = {m, n, l}` হলে `P(Q)` এবং `P(R)` নির্ণেয় কর। 

    Answer
    সমাধান:
    দেওয়া আছে,
    `Q = {x, y}` এবং `R = {m, n, l}`
    এখানে,
    `Q`এর উপসেটসমূহ `{x, y}, {x},{y}` এবং `O/`.
    `:. P(Q) = {{x, y}, {x}, {y}, O/}`
    আবার,
    `R`এর উপসেটসমূহ `{m, n, l}, {m, n}, {m, l}, {n, l}, {m}, {n}, {l}` এবং `O/`.  
    `:. P(R) = {{m, n, l}, {m, n}, {m, l}, {n, l}, {m}, {n}, {l}, O/}`    (Ans.)

    1. Report
  10. Question:৬. `A = {a, b}, B = {a, b, c}`এবং `C = A uu B` হলে, দেখাও যে, `P(C)`এর উপাদান সংখ্যা `2^n`, যেখানে `n` হচ্ছে `C`এর উপাদান সংখ্যা। 

    Answer
    সমাধান:
    দেওয়া আছে,
    `A = {a, b}, B = {a, b, c}`
    `:. C = A uu B`
    `= {a, b} uu {a, b, c}`
    `= {a, b, c}`
    এখানে,
    `C` এর উপাদান সংখ্যা `3`.
    এবং `C` এর উপসেটসমূহ `{a, b, c}, {a, b}, {b, c}, {c, a}, {a}, {b}, {c}, O/`.
    `:. P(C) = {{a, b, c}, {a, b}, {b, c}, {c, a}, {a}, {b}, {c}, O/}`
    `:. P(C)` = এর উপাদান সংখ্যা `8`
    `= 2^3` 
    `:. P(C)` এর উপাদান সংখ্যা `2^n`
    যেখানে `n` হলো `C` এর উপাদান সংখ্যা।  (দেখানো হলো)

    1. Report
Copyright © 2024. Powered by Intellect Software Ltd